博客
关于我
PAT---A1122 Hamiltonian Cycle
阅读量:635 次
发布时间:2019-03-14

本文共 687 字,大约阅读时间需要 2 分钟。

判断给定的顶点集合是否能构成哈密尔顿回路,我们可以按照以下步骤进行:

首先,明确这三个关键条件:

  • 每组顶点数必须正好等于n。
  • 顶点集合必须是连通的。
  • 顶点按照给定顺序必须构成一个回路,意味着每两个连续的顶点之间必须存在边,并且最后一个顶点必须与第一个顶点相连。
  • 以下是具体的实现思路:

  • 读取输入并初始化邻接矩阵:首先读取图的顶点数n和边数m,然后将这些边信息填充到邻接矩阵中,方便后续的连通检查。

  • 处理每组顶点:对于每组输入的顶点集合,执行以下检查:

    • 顶点数目是否正确:检查当前顶点数是否等于n。如果不等,直接输出"NO"。
    • 是否存在重复顶点:检查顶点集合中是否存在重复。因为每个顶点必须恰好出现一次。
    • 检查连通性:确保该顶点集合内部是连通的,即每对顶点之间都有路径相连。这可以通过广度优先搜索(BFS)或深度优先搜索(DFS)来实现。
    • 回路检查:依次检查每对连续的顶点之间是否存在边,并且最后一个顶点必须与第一个顶点相连,确保这是一个闭合的环路。
  • 输出结果:对每组顶点集合执行上述检查后的结果,打印"YES"或"NO"。

  • 在编码时,可以实现这些检查的方法如下:

    • 读取顶点并进行初步检查:首先确保顶点数为n,然后收集所有顶点,检查是否有重复。
    • 连通性检查:对给定的顶点顺序,从第一个顶点开始,依次检查每一对相邻顶点是否连通。同时,如果一个顶点集合是不连通的,那么它绝对不是一个哈密尔顿回路。
    • 回路闭合检查:在检查完所有相邻顶点之间的连接后,还需要确保最后一个顶点与第一个顶点有边相连,从而形成闭合的环。

    通过这种方法,可以系统地判断每组顶点集合是否能构成有效的哈密尔顿回路。

    转载地址:http://bzhoz.baihongyu.com/

    你可能感兴趣的文章
    NTP及Chrony时间同步服务设置
    查看>>
    NTP服务器
    查看>>
    NTP配置
    查看>>
    NUC1077 Humble Numbers【数学计算+打表】
    查看>>
    NuGet Gallery 开源项目快速入门指南
    查看>>
    NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
    查看>>
    nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
    查看>>
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Number Sequence(kmp算法)
    查看>>
    Numix Core 开源项目教程
    查看>>
    numpy
    查看>>
    Numpy 入门
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>